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Fisiologı́a Celular, Departamento de Bioquı́mica, Mexico City, Mexico

Despite the increasing number of published protein structures, and the fact that each protein’s function relies on its three-
dimensional structure, there is limited access to automatic programs used for the identification of critical residues from the
protein structure, compared with those based on protein sequence. Here we present a new algorithm based on network
analysis applied exclusively on protein structures to identify critical residues. Our results show that this method identifies
critical residues for protein function with high reliability and improves automatic sequence-based approaches and previous
network-based approaches. The reliability of the method depends on the conformational diversity screened for the protein of
interest. We have designed a web site to give access to this software at http://bis.ifc.unam.mx/jamming/. In summary, a new
method is presented that relates critical residues for protein function with the most traversed residues in networks derived
from protein structures. A unique feature of the method is the inclusion of the conformational diversity of proteins in the
prediction, thus reproducing a basic feature of the structure/function relationship of proteins.
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INTRODUCTION
Deciphering protein function is one of the most active areas of

research in biology involving both experimental and theoretical

approaches [1,2]. In that endeavor, identification of the critical

residues for protein function constitutes a central area of research

[3,4,5]. For instance, identification of critical residues in proteins is

important for both protein function modulation (e.g., drug design

[6]) and protein classification [4]. To this end, protein sequences

constitute the first and most abundant source of data to infer

protein function and hence most computational methods designed

to identify critical residues are based on the analysis of protein

sequences. However, protein function results from the three-

dimensional structure adopted by the protein sequence and hence

a protein’s three-dimensional structure may be more appropriate

to identify critical residues [7]. In that sense, a residue critical for

a protein structure is as well critical for the protein function.

Hence, referring to critical residues for protein function includes

both types of residues: residues critical for protein structure and/or

residues critical for its biological function (e.g., catalysis, binding).

With the increased capacity to determine the three-dimensional

structures of proteins there has come an exponential growth in the

public database of protein structures [8]. With this accumulation

of data, new algorithms for predicting critical residues from

protein’s structure have emerged [9–11]. These new methods are

especially important because protein structures sometimes are the

only data source to predict critical residues, since at least 25% of

the known proteins do not show significant sequence similarity

with any other proteins [3,12]. However, either few of these new

algorithms based on protein structure are available [13–15] or

these use sequence analysis as part of their approach [13–17].

Thus, in order to assist in the identification of critical residues

considering this new trend on protein databases, it is important to

develop structure-based methods that are at least as reliable as

sequence-based methods and available for the scientific commu-

nity to use.

We have recently described a method that uses only the protein

structure to identify critical residues for protein function, based on

the centrality measurement closeness centrality [11]. Our method

is based on tracing shortest paths while traversing all the nodes in

the net, so we refer to it as the Minimum Interacting Networks

(MIN) method. Using a single structure for a given protein, MIN

method detects critical residues with high sensitivity, and

complements the predictions derived from sequence analysis

approaches [11]. Alternatively, the centrality measurement called

betweeness has been reported to be useful to identify critical

residues for protein folding [18] or protein-protein interactions

[10]. In any of these studies [10,11,18], the methods require the

users to either provide the expected number of critical residues

(however, most commonly there is no a priori knowledge to

determine this number) or to use a statistical approach that

depends on the amount of structural data available. In order for

structure-based approaches to be used in a systematic fashion,

these limitations need to be improved. In the current work, we

report a highly specific method based on betweeness to identify

critical residues, which sensitivity relays on the number and

diversity of conformations provided (see Methods). In order to deal

with the analysis of multiple protein structures, we describe an

implementation that takes advantage of the multitask capacity

embedded in JavaTM, that is, parallel processing and distributed
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computing [19] to give access to this software to the scientific

community. We refer to this software as JAMMING (JAva-based

Multi-threaded MIN-GUI).

First, we describe the method and its overall reliability to

identifying known critical residues for protein function. Then, we

show that including multiple structures of a protein of interest may

be used to improve the reliability of our method and makes it more

reliable than other automatic methods based on either protein

sequence or protein structure. Our results indicate that JAM-

MING may be used to identify critical residues for protein func-

tion that are either critical for keeping the protein structure and/or

for its biological function (e.g., catalysis, protein interactions).

RESULTS

Algorithm
The underlying idea of JAMMING is that residues central for

residue-residue contacts should be critical for protein function.

Hence, our method is divided into three steps:

1. Building networks from protein structures.

2. Tracing the shortest path connecting every pair of residues in

the network derived in step 1.

3. Find the residues with the largest dynamic connectivity (dk).

The results of each step (1 through 3) constitute the input for the

next step. Additionally, in order to allow for JAMMING

calculations to be executed at the same time either in multiple

machines (JavaParty implementation) or through a web interface

(Servlet implementation), the three steps were embedded in

independent remote objects or JavaTM’s thread. Briefly, JavaParty

[19] provides a framework that allows multi-threaded JavaTM

programs to be distributed on environments such as clusters based

on the Remote Method Invocation (RMI) protocol using the

Remote class that is a simple wrapper of the Thread class from the

Java Standard Edition.

Implementation
Here, we report the training of our method with the dynamic

connectivity (dk) as a centrality measurement (see Methods).

Briefly, dk estimates the frequency of a node to be traversed in

connecting the whole network through shortest paths. Thus, a node

with a large dk value is a highly traversed one. To determine the

best protocol to build a network derived from a protein structure,

we built 21 different types of networks using different criteria (see

Table 1). In order to evaluate the best network, we used two sets of

proteins (total 131 proteins, see Methods) and evaluated the

sensitivity, specificity and error of the predictions based on the dk

value to identify critical residues.

We plotted the frequency of the dk values in order to identify

the most traversed residues from the networks derived from the

protein three-dimensional structure. Such distribution showed

a tendency to separate highly traversed residues (see Fig. 1 for an

example) that we used to define an automatic procedure to isolate

them (see Methods). In this case, the most traversed residues in the

network are also the less frequent.

We are interested in identifying critical residues with the highest

specificity and lowest error values, even if the sensitivity is low. As

we will show below, the sensitivity of our method relays on the

number of structures analyzed, so a method with high specificity in

a single structure is desirable. We show for the T4L-TEM1-

HIV1P set, that building networks pairing every residue

(disregarding charge or any other criterion) rendered the best

values for error and specificity (see Fig. 2 and Table 1). This trend

Table 1. Parameter sets used to generate networks from the
protein structures in the T4L-TEM-HIVP and FSSP128 sets.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dmin (Å) Dmax (Å) Dcriterion Pairing Error

0 3 Average H 1.0

0 3 Average All 1.0

0 3 Once H 0.97

0 3 Once Ch 0.96

0 3 Once Ch+H 0.95

0 3 Once All 0.71

0 4 Once All 0.59

0 5 Average Ch+H 1.0

0 5 Average All 0.91

0 5 Once H 0.85

0 5 Once Ch 0.91

0 5 Once Ch+H 0.83

0 5 Once All 0.81

0 6 Once All 0.68

0 7 Once All 0.72

0 8 Once All 0.68

0 10 Average All 0.68

0 10 Once Ch 0.89

0 15 Average All 0.75

0 20 Average Ch+H 0.88

5 20 Once Ch 0.96

Dmin (Å): Minimum distance of separation in Angstroms (Å) between atoms or
residues.
Dmax (Å): Maximum distance of separation (Å) between atoms or residues.
Dcriterion: If once, residues were paired if at least one atom in each residue was
within the specified D value. If average, the distance between the centers of
mass of the residues was taken. Pairing: 4 rules for pairing residues were
implemented: ch: the two residues are polar or charged and have
complementary charges, ch+h: the two residues have complementary charges
or both are hydrophobic, h: the two residues were hydrophobic and all: any two
residues were paired. Error: An estimation of the reliability of the predictions of
critical residues achieved using the corresponding network: the smaller the
error the better the prediction (see Methods). The Error is indicated here only
for the T4L-TEM-HIVP set.
doi:10.1371/journal.pone.0000421.t001..
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Figure 1. Distribution of the dynamic connectivity in a protein-
derived network. The dynamic connectivity (df) observed in the T4
lysozyme protein (2LZM) is plotted against the probability of finding
residues with such dk (P(dk)). In this type of plot, multiple residues are
represented in a single dk value.
doi:10.1371/journal.pone.0000421.g001
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was observed for all of the distances tested, but the complete data

are only shown for the 0–3 Angstrom or 0–5 Angstrom distances.

Additionally, networks built pairing residues 4 Å, 6 Å, 7 Å or 8 Å

apart or closer rendered higher sensitivity values but lower

specificity values than those at 5 Å.

To extend these studies to a larger dataset, we used the

FSSP128 set, where some of the critical residues are known. A

similar set of proteins has been previously used to evaluate the

predictive value of functionally important residue predictions [3].

We observed that networks built pairing residues at 5 Å apart or

closer also rendered a high specificity in the predictions (see Fig. 3).

The FSSP128 set includes as critical residues those in the SITE

annotations of the PDB file. These annotations include mainly

either residues observed in the structure to interact with a ligand or

highly conserved residues, but do not include all possible critical

residues. Alternatively, the T4L-TEM1-HIV1P set does include

every critical residue for each protein. Thus, it is not surprising

that the average sensitivity value for the FSSP128 set is larger than

that observed for the T4L-TEM1-HIV1P set.

As with other centrality measurements [11], we noticed that the

most traversed residues lay on both the protein’s core and surface

(see Fig. S1 and S2), but with a trend to be on the protein’s core.

Specifically, in the FSSP128 set 85.8% of the predicted critical

residues are buried within the protein core and 14.2% are

exposed; these percentages are obtained by considering as part of

the protein’s core those residues with a relative surface area of

50% or less (see Fig. S1 for details). This trend is complementary

to sequence-conserved residues as we noted previously for another

centrality measurements [11]. Furthermore, in the T4L-HIV-

TEM1 set we observed again that most of the predicted critical

resides by JAMMING have a role on structure (85%) but some

have a catalytic role (15%) (see Table S1).

Improving sensitivity by including multiple protein

structures
Considering that proteins are not static molecules, it is accepted

that an ensemble of protein structures accomplishes protein

function [20]. Thus, in order to identify most of the critical

residues for protein function (to improve the sensibility of our

method) is important to include in the analysis several protein

structures. Normal mode analysis is a powerful method for

predicting as much as half of the possible movements of proteins

with only two normal modes [21]. Thus, we would expect that

using multiple conformations that represent most of the confor-

mational diversity of a protein could improve the sensibility of our

approach. In that case, our goal is to produce a method capable of

reproducing at least the reliability of automatic sequence-based

approaches. For example, we have previously evaluated two

automatic methods based on sequence analysis, and biased them

providing the correct number of critical residues to be predicted.

In that case, these methods achieved an average error of 44%

(sensibility 76% and specificity 67%) using the T4L-TEM1-

HIV1P set [11]. However, in the most common scenario where no

information is available about the number of critical residues for

a protein, following the common assumption that critical residues

are the most conserved ones [22], the average error value increases

for this same set to 49.6% (sensibility 53.3% and specificity

83.3%). As we have shown above, considering a single protein

structure does not render this level of reliability (see Fig. 2). In

Fig. 4 we show for this same set of proteins that using multiple

structures for a given protein may improve the reliability of our

method to an average error value of 48.4% (sensitivity 67.6% and

specificity 63.9%). Another important implication from our results

is that the number of structures included in the analysis does not

Figure 2. Sensitivity vs. Specificity of JAMMING in the T4L-TEM-HIVP set. The average sensitivity (axis labeled ,Sensitivity.) and average
specificity (axis labeled ,Specificity.) over all the 3 proteins included in the T4L-TEM-HIVP set are presented for the predictions performed by
JAMMING. Every point corresponds to a different network model according to Table 1: Dcriterion = once is an empty symbol, Dcriterion = average is a filled
symbol, pairing hydrophobic residues is represented by a square, pairing complementary charged residues is represented by a triangle, pairing
complementary charged residues and hydrophobic residues is represented by a rhombi and pairing every residue at the specified Dcriterion is
represented as a circle. The labels (e.g., 0-5) on each symbol in the graph, indicate the minimum and maximum distance used to establish the
connections among the residues (see Methods and table 1). For instance, a 0-5 labeling an empty circle corresponds to the sensitivity and specificity
obtained from networks derived from the T4L-TEM-HIVP set where any two residues were paired (symbol is a circle) if at least one atom between

these residues (Dcriterion = once, represented by an empty symbol) is within 0-5 Á̊ distance (label 0-5).
doi:10.1371/journal.pone.0000421.g002
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Figure 3. Sensitivity vs. Specificity of JAMMING in the FSSP128 dataset. The average sensitivity (axis labeled ,Sensitivity.) and average specificity
(axis labeled ,Specificity.) over all the FSSP128 set are presented for the predictions performed by JAMMING. Every point corresponds to a different
network model according to Table 1: Dcriterion = once is an empty symbol, Dcriterion = average is a filled symbol, pairing hydrophobic residues is
represented by a square, pairing complementary charged residues is represented by a triangle, pairing complementary charged residues and
hydrophobic residues is represented by a rhombus and pairing every residue at the specified Dcriterion is represented as a circle. For simplicity, only

the results for distance separations of 0-3 Á̊, 0-4 Á̊, 0-5 Á̊ and 0-6 Á̊ are presented. For instance, a 0-4 labeling an filled circle corresponds to the
sensitivity and specificity obtained from networks derived from the FSSP128 set where any two residues were paired (symbol is a circle) if on average

every atom between these residues (Dcriterion = average, represented by a filled symbol) is within 0-4 Á̊ distance (label 0-4).
doi:10.1371/journal.pone.0000421.g003

Figure 4. Sensitivity vs. Specificity of JAMMING using multiple protein structures. The average sensitivity (axis labeled ,Sensitivity.) and average
specificity (axis labeled ,Specificity.) over all the 3 proteins included in the T4L-TEM-HIVP set and its normal mode perturbed models are presented.
The triangles represent the data including 2 low-frequency modes (modes 10 and 11, see Methods section); the squares represent the 2 lowest-
frequency modes (modes 30 and 31, see Methods); the circles represent the data including 5 normal modes. Each mode was used to generate 10
perturbed models from the initial PDB structure (see Methods section), so the average values in this plot represent 44 (triangles), 44 (squares) and 165
(circles) protein structures. For comparison, the sensitivity and specificity obtained using a single protein structure for each protein in this set is
represented in an empty rhomb.
doi:10.1371/journal.pone.0000421.g004
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determine the reliability of the predictions, but the conformational

diversity sampled by the structures (i.e., using the lowest-frequency

modes).

Web site deployment and software distribution
In order to provide public access to JAMMING, we developed

a web site using the JavaTM’s servlet technology. The servlet

(master program) may render requests to a group of registered

machines (workers). Yet, the current servlet implementation only

deploys the requests to a single computer. Alternatively, we have

made available a command-line version of our program through

our web site that is ready to be used in a cluster environment as

well as a GUI to be run on a single computer. As noted above,

sometimes it is important to include multiple structures for a given

protein to have a good reliability in the predictions. So, it is

important to keep in mind that running multiple analyses in

a single CPU may not be feasible, depending on the specifications

of the hardware, so it is usually convenient to have the chance to

use multiple processors.

DISCUSSION
The accumulated information on protein structures and commu-

nity efforts such as the structural genomics initiative [23] may lead

to a better understanding of protein functions beyond what

sequence analysis is rendering nowadays [1]. One important step

towards that goal is the identification of critical residues for protein

function. Here we present the implementation of an algorithm

written in the JavaTM programming language aimed to detect

critical residues from protein structures. Our implementation,

dubbed JAMMING, is based on the identification of the most

traversed residues from protein structure-derived networks.

We trained JAMMING with different types of protein structure-

derived networks and found that pairing every residue at 5 Å apart

or closer rendered the most reliable predictions on average. Our

results show that pairing residues that display complementary

physicochemical properties does not improve the identification of

critical residues, indicating that the optimization of our network

model does not require residue-type discrimination. It is important

to note that our previous work using closeness centrality to identify

critical residues from protein structures [11] employed the same

criteria for building networks as the one described here. We

suggested then [11] that our approach for building networks

offered an improved reliability (sensitivity 70%, specificity 70%)

over that described by Amitai and colleagues [9] (sensitivity 40%,

specificity 10%) that uses the same centrality measurement,

closeness centrality, to identify critical residues.

Previous studies have indicated that critical residues tend to be

buried in the protein’s core [24], while few critical residues are on

the protein’s surface, such as active site residues. Our results are

consistent with this notion: most critical residues detected by

JAMMING (,85%) lay on the protein’s core. To explain our

results in terms of network connectivity, lets assume that proteins

adopt a three-dimensional structure where all residues are

regularly packed; in this case, it is likely that the most traversed

residues will always be in the protein’s core. However, we observe

that the most traversed residues lie on both the protein’s core and

protein’s surface (see Figs. S1 and S2 and Table S1). This suggests

that the three-dimensional structures of proteins do not necessarily

feature regular packing. In other words, if proteins will have

regularly distributed connections on the three-dimensional space

(such as equally dense polymers), the most central residues will

always be on the protein’s core. In agreement with this observa-

tion, it has previously been reported that protein structure-derived

networks present a non-regular distribution referred to as the

small-world phenomena [18]. We do not know yet, however,

whether the three-dimensional localization of the most traversed

residues depend on the small-world character observed in the

packing of protein structures or any other topological property.

Other approaches to identify critical residues with different basis

than ours [3,4,5,9,13,16,17] may be combined to improve the

predictive capacity of these methods. For instance, we have shown

that closeness-centrality could be as accurate and complementary to

sequence-based detection of critical residues, provided that the

correct number of critical residues is previously known [11]. How-

ever, the exact number of critical residues for a given protein is not

commonly known, thus limiting the usefulness of these approaches.

On the other hand, JAMMING is shown to improve the

reliability of automatic sequence-based approaches by considering

multiple normal mode perturbed models of a given protein. In that

sense, JAMMING may be especially useful in cases where there

are a limited number of sequences to perform a sequence analysis.

When using our approach to analyze other protein structures,

we noticed that some structures only hold as central residues those

in the protein’s core (data not shown), but including multiple

structures of a protein always render critical residues on the

protein’s surface as well. So, as a general approach, the researcher

may choose first to identify critical residues based exclusively on

a protein structure provided that the specificity of the method is

quite good in that condition, and depending on the goal of the

researcher it may be useful to run JAMMING using multiple

protein structures.

So far, we have described the reliability of JAMMING in

average terms. Now, we will describe some specific predictions

obtained with it (see Table S1). Our goal is dual: i) to highlight

predictions not attainable from the sequence and ii) to describe the

usefulness of our method to identify residues involved in binding

(i.e., active sites, protein-protein interfaces).

The Arg145 residue in the bacteriophage T4 lysozyme was

identified by our method to be critical for the protein function, yet

this residue is not conserved [24]. From the three-dimensional

structure of the bacteriophage T4 lysozyme it has been observed

that Arg145 forms part of a buried salt bridge with the catalytic

residue Glu11 [24], suggesting a role in stabilizing the conforma-

tion of this catalytic residue. Interestingly, mutations on Arg145 do

not indicate a stringent requirement for this salt bridge, since

Arg145 can be replaced without deleterious effects for the protein

function with uncharged residues [24]. On the other hand, most

substitutions of this residue abolished the activity of the lysozyme

indicating a critical role for the function of the enzyme [24]. Thus,

sequence analysis revealed that Arg145 can be replaced by non-

conservative amino acids during the evolution of this enzyme

(Arg145 is aligned with Cys, Val, Gln, Glu, Lys, Ile, Asp, Pro and

Thr, based on the alignment reported for the lysozyme at the Dali

server [25]), and yet our method identified this residue as critical

for the protein function. These data indicates that in the

bacteriophage T4 lysozyme, position 145 plays an important role

for the protein function and an Arginine residue is adequate for it,

yet in other lysozymes different residues may accomplish that

function. In this example we can appreciate how our method

complements sequence analysis.

Now we will analyze a couple of residues involved in binding

sites. As we have shown [11], conserved residues tend to be on the

protein surface, thus sequence analysis in combination with

structure analysis may render a good prediction of binding sites

[14]. However, having the ability to identify binding sites based

exclusively on protein structure may be important when few

homologue sequences are available for a given protein, such as in

JAMMING
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the case of viral proteins or proteins with new folds, for instance.

The proteins analyzed here all have many homologue sequences,

but these serve to exemplify the usefulness of our approach in the

identification of binding sites based only on protein structure.

One of these residues is Thr71 in the TEM-1 beta-lactamase.

This residue is not conserved among the class A beta-lactamases

(enzymes capable of hydrolyzing beta-lactam antibiotics mostly

encoded in plasmid in Gram(+) and Gram(2) bacteria), but it is

conserved among the TEM1 beta-lactamases (the most common

plasmid-mediated beta-lactamase). This conservation pattern

suggests a possible role in specificity. Random mutagenesis at this

position supports this notion [26]. This level of prediction can be

achieved mainly because of the large number and diversity of

protein sequences available for this protein family. On the other

hand, our method used only one three-dimensional structure of

the TEM1 beta-lactamase to identify this surface-exposed residue

as critical. That is, JAMMING may be useful in identifying

residues critical for the distinctive function of proteins even when

few homologue sequences are known.

Another residue involved in binding is Leu24 from the HIV-1

protease. This is a conserved residue and it is located in the

interface of the protease homodimer. Interestingly, our method

predicted this residue as critical for the protein function consider-

ing only the monomer of the protease. In agreement, mutagenesis

of Leu24 showed small tolerance to substitutions at this position

[27]. Thus, for the Thr71 in the TEM-1 beta-lactamase and

Leu24 in the HIV-1 protease, JAMMING used only the structural

information of a protein without any knowledge about its

interactions, indicating that the protein structure holds informa-

tion about its function that is identifiable by our procedure.

The ability to identify critical residues for protein structure/

function represents a basic tool for many important areas in

bioinformatics, including protein structure prediction, protein

function design or functional classification, among others. In many

of these areas, a program capable to be run in a systematic fashion

is desirable. JAMMING is the first available software of its class

that may be used to complement other approaches or be used

where others are limited (e.g., proteins with known structure but

limited sequence information).

In summary, JAMMING is a multi-threaded JavaTM imple-

mentation of a new approach aimed at detecting critical residues

from protein structures. Our method is suitable to be executed in

multiple machines or on a single one. JAMMING is available at

http://bis.ifc.unam.mx/jamming/.

METHODS

Systems
Three Linux boxes (RedHat 7.2) with 2 Pentium III processors

each were used to run the described calculations. These boxes

were configured as a cluster with the Rocks framework (http://

www.rocksclusters.org). Additionally, 1 Linux and 1 MacOS6
computers were used to test our implementation in a heteroge-

neous computer system (see Implementation below). This was

distributed using the JavaParty framework (http://www.ipd.uka.

de/JavaParty/).

All of the procedures described in this work were coded in the

JavaTM programming language (http://java.sun.com). Two types

of implementations were developed in this work. The first one was

developed to test JAMMING when multiple protein structures are

being analyzed. This program may be executed on a cluster of

computers using the JavaParty framework. Also, this program may

be executed in a single computer without the JavaParty

framework. In both cases we used Java’s Threads allowing to

switch from one to another without major modification on the

code (see below) The second implementation was a JavaTM’s

servlet that provides a web interface to access JAMMING for

single protein structure analysis. The WebMol Applet (http://

www.cmpharm.ucsf.edu/,walther/webmol.html) was adapted to

graphically display the results of the predictions by the servlet.

Only protein atoms are considered in this version of the program.

Data
Two protein data sets were used to test our method: the T4L-

TEM-HIVP set and the FSSP128 set. Briefly, the T4L-HIV-

TEM1 set includes three enzymes that have been extensively

characterized structurally and functionally (TEM1 beta-lactamase

(PDB code 1BTL), HIV-1 protease (PDB code 1HIV) and T4

lysozyme (PDB code 2LZM)). The FSSP128 set includes 128 other

proteins for which there is a partial annotation regarding the

critical residues (single chained FSSP protein entries with SITE

annotations). The 128 PDB names used in this set are: 1a3c, 1a6q,

1a7j, 1aac, 1ac5, 1ah7, 1ak1, 1ako, 1amj, 1an8, 1apq, 1arv, 1atg,

1auz, 1ayl, 1ayx, 1az9, 1b64, 1bag, 1bdb, 1bea, 1bfd, 1bia, 1bif,

1bix, 1bk0, 1bli, 1bn5, 1bor, 1boy, 1bp1, 1bqk, 1brt, 1btl, 1c25,

1ca1, 1cby, 1cex, 1cfb, 1chc, 1chd, 1csh, 1ctn, 1ctt, 1cvl, 1dmr,

1drw, 1dxy, 1ecl, 1eh2, 1emn, 1esl, 1eut, 1far, 1fnc, 1gca, 1htn,

1hyt, 1iba, 1ido, 1iow, 1iyu, 1kcw, 1kpf, 1lam, 1lay, 1lbu, 1lgr,

1lml, 1lox, 1mfs, 1mla, 1mrp, 1mup, 1nif, 1opc, 1pda, 1pdc, 1pfo,

1phd, 1phm, 1pii, 1pkp, 1poa, 1poc, 1rfs, 1rie, 1rkd, 1rlw, 1skf,

1snc, 1sra, 1thx, 1uch, 1uox, 1ush, 1whi, 1wod, 1xbd, 1xpa, 1ytw,

2abk, 2adr, 2af8, 2cba, 2cmd, 2dkb, 2dri, 2fha, 2fua, 2liv, 2mcm,

2mnr, 2rn2, 2sas, 2vil, 3dfr, 3dni, 3ebx, 3gcb, 3pte, 3ssi, 3tgl, 4enl,

4icb, 4pah, 5eat and 7rsa.

Building networks from protein structures
Networks were derived from protein structures by a distance

criterion. That is, two residues were considered neighbors and

consequently paired in the network if they were within a given

distance from each other. Two different distance criteria were

used: a) two residues were considered neighbors if any of their

atoms were within the specified distance, and b) two residues were

considered neighbors if their centers of mass were within the

specified distance. Additionally, four filters were used to define

neighbors, that is, given that the distance criteria were satisfied, the

residues being paired were considered neighbors if: i) the two

residues were polar or charged and had complementary charges

(Asp, Glu, Asn, Gln, Tyr, Phe were paired with Arg, Lys, His, Asn,

Gln), ii) the two residues had complementary charges or both were

hydrophobic (Asp, Glu, Asn, Gln, Tyr, Phe, Ala, Leu, Ile, Val,

Trp, Ser, Thr, Cys, Met were paired with Arg, Lys, His, Asn, Gln,

Ala, Leu, Ile, Val, Trp, Ser, Thr, Cys, Met), iii) the two residues

were hydrophobic (Ala, Leu, Ile, Val, Trp, Ser, Thr, Cys, Met

were paired with Ala, Leu, Ile, Val, Trp, Ser, Thr, Cys, Met), or iv)

any two residues were paired. Therefore, different types of

networks were built specifying 7 separation distances, 2 distance

criteria and four pairing criteria (see Table 1 for a list of different

parameters used to build networks). The networks built had amino

acid residues as nodes and their interactions as links. Links were

labeled with identical weight and were bidirectional.

Finding the central residues from protein-derived

networks
In order to find the central residues from protein structure-derived

networks, every pair of residues were connected through a shortest

path. We used the Dijkstra’s algorithm for tracing such shortest

paths [28]. By counting how many times every residue is traversed
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in connecting every pair of residues in the graph we define the

node’s dynamic connectivity, dk. Betweeness and dk are related:

betweeness = dk/(N(N-1)), where N is the number of nodes in the

graph. We referred to dynamic connectivity of a residue, as

opposed to a static connectivity named the node’s degree (i.e.,

number of direct neighbors to a node). By looking at the frequency

of dk values in protein structures (dk vs. the probability of such

dynamic connectivity, P(dk); P(dk) is obtained by counting the

number of times a given dk value is present in the graph divided by

N) we define the most traversed residues as those with the largest

dynamic connectivity values having the same smallest P(dk) value

in the distribution. For instance, in figure 1 we can graphically

identify the most traversed residues as those presenting the largest

dk values on the right-lower corner. Note that a single dk value

includes multiple residues with the same dk value.

Estimating the reliability of the predictions
Two measurements, sensitivity and specificity, were used to

account for the reliability of the method tested, as described in

[11]. To estimate these parameters, we first count the number of

experimentally determined critical residues (E), the number of

non-critical residues (NE = (protein sequence’s length)-E), the

number of total predicted critical residues (P), the number of

truly predicted critical residues (TP) and the number of false

predicted critical residues (FP = P-TP). Hence, Sensitivity is

defined as Se = TP/E and Specificity as Sp = (NE-FP)/NE. E

values were those experimentally determined and annotated as

a SITE for the T4L-TEM-HIVP set and FSSP128 set respectively.

From these parameters we evaluated the error (how far form

perfection is the method) associated with a predictive method [11]:

error~½(1� Se)
2
z(1� Sp)2�0:5

Normal mode perturbed models generation
The ElNemo web service to compute the normal modes of the T4L-

TEM-HIVP set was used [21]. Briefly, 25 normal modes were

calculated, starting from the non-trivial mode 7, and for each 11

PDB models were obtained. These include the reference structure

and 10 models were generated using a range of amplitude values

(2100 to 100, with increments of 20). The atoms in the protein

were grouped by the ‘rotation-translation-block’ approximation.

The cutoff distance for elastic interactions was set to 8 Angstroms.

SUPPORTING INFORMATION

Table S1 Predicted critical residues and their annotated function

in the T4L-HIV-TEM1 set.

Found at: doi:10.1371/journal.pone.0000421.s001 (0.12 MB

DOC)

Figure S1 Relationship between the surface area and dk

centrality measurement for the FSSP128 set of proteins

Found at: doi:10.1371/journal.pone.0000421.s002 (0.25 MB TIF)

Figure S2 Structural location of the most traversed residues

Found at: doi:10.1371/journal.pone.0000421.s003 (0.31 MB TIF)
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